- Ξ Υ¨Π²ΡΞΏΡα² ΟΠ»Φ ΥΏαα Ρ ΡΦΠΏΡΡ
- Ξ ΥΈΦ Π΅ΠΊΠ΅αΠ°Π²ΠΎΡ
Tabel distribusi frekuensi sering sekali digunakan sebagai cara untuk bisa meringkas data yang digunakan dalam penelitian atau berbagai kebutuhan lainnya. Data yang jumlahnya banyak akan bisa lebih mudah dimengerti apabila diubah menjadi bentuk tabel ini. Sehingga data akan bisa lebih terorganisir dengan baik. Jika kamu belum tahu mengenai hal yang satu ini, mari kita coba pelajari bersama pada kesempatan kali ini. Yuk mari kita mulai. Seperti yang sudah disebutkan di atas, tabel distribusi frekuensi adalah sebuah tabel atau bagan yang akan merangkum nilai dan frekuensi dari sebuah data. Ini adalah cara yang berguna untuk mengatur data jika kamu memiliki daftar angka yang mewakili frekuensi hasil tertentu dalam sampel. Tabel distribusi frekuensi memiliki dua kolom. Kolom pertama mencantumkan berbagai hasil yang terjadi dalam data, dan kolom kedua mencantumkan frekuensi dari hasil. Frekuensi akan bisa memberitahukan seberapa sering sesuatu nilai terjadi. Baca Juga Belajar Statistika, dari Penyajian hingga Ukuran Penyebaran Data Bagian-bagian Tabel Distribusi Frekuensi Ada bagian-bagian yang akan dipakai dalam membuat sebuah tabel distribusi frekuensi. Bagian-bagian tersebut adalah sebagai berikut ini 1. Kelas-kelas Kelompok nilai data atau variabel dari suatu data acak. 2. Batas kelas Nilai-nilai yang membatasi kelas yang satu dengan kelas yang lain. Batas kelas menjadi batas semu dari setiap kelas, karena di antara kelas yang satu dengan kelas yang lain masih terdapat tempat untuk angka-angka tertentu. Terdapat dua batas kelas untuk data-data yang telah diurutkan, yaitu batas kelas bawah lower class limits dan batas kelas atas upper class limits. 3. Tepi kelas Merupakan batas nyata kelas, yaitu batas kelas yang tidak memiliki tempat untuk angka tertentu antara kelas yang satu dengan kelas yang lain. Hal ini juga dibagi menjadi tepi bawah kelas dan tepi atas kelas. 4. Titik tengah kelas atau tanda kelas Merupakan angka atau nilai data yang tepat terletak di tengah dari suatu kelas. Titik tengah kelas menjadi nilai yang akan merepresentasikan nilai dalam data. Titik tengah kelas akan bisa diketahui melalui rumus ini Β½ batas atas + batas bawah kelas 5. Interval kelas Bagian yang memisahkan kelas yang satu dengan kelas yang lain. 6. Panjang interval kelas atau luas kelas Jarak antara tepi atas kelas dan tepi bawah kelas. 7. Frekuensi kelas Seberapa banyaknya data yang termasuk ke dalam kelas tertentu dari data acak. Baca Juga Latihan Soal Fisika Kelas 10 yang Bisa Kamu Gunakan Untuk Memahami Berbagai Materi Teknik Distribusi Frekuensi Untuk bisa membuat sebuah tabel distribusi frekuensi, ada beberapa langkah yang bisa kamu ikuti, langkah-langkah tersebut adalah 1. Urutan data dari yang terkecil sampai yang terbesar. 2. Hitung jarak atau rentangan R. Rumus R = data tertinggi β data terkecil. 3. Hitung jumlah kelas K. Rumus K = 1 + 3,3 log n. n = jumlah data. 4. Hitung panjang kelas interval P. Rumus P = Rentangan R / jumlah kelas K. 5. Tentukan batas data terendah, dan lanjutkan dengan menghitung kelas interval, caranya adalah dengan menjumlahkan tepi bawah kelas ditambah dengan panjang kelas P dan hasilnya dikurangi 1 sampai pada data terakhir. 6. Buatlah tabel sementara tabulasi dengan cara menghitung satu demi satu sesuai dengan urutan interval kelas. Contoh soal Terdapat data nilai ujian kelas 10 adalah sebagai berikut. 30, 25, 90, 42, 50, 45, 26, 80, 70, 70, 60, 45, 46, 50, 40, 78, 55, 43, 56, 58 , 60, 60, 60, 61, 62, 63, 63, 64, 65, 65. Buatlah distribusi frekuensi dari data di atas. Solusi Pertama, urutkan data dari yang terkecil hingga yang terbesar. 25, 26, 30, 40, 42, 43, 45, 45, 46, 50, 50, 55, 56, 58, 60, 60, 60, 60, 61, 62, 63, 63, 64, 65, 65, 70, 70, 78, 80, 90 Setelah itu hitung jarak atau rentangan R. Rumus R = data tertinggi β data terkecil. R = 90 β 25 = 65 Menghitung jumlah kelas. K = 1 + 3,3 log n K = 1 + 3,3 log 60 K = 1 + 3,3 K = 1 + K = 7 dibulatkan Hitung panjang kelas P. P = R/K P = 65 / 7 P = dibulatkan menjadi 9 Hitung batas panjang interval kelas P 25 + 9 -1 = 33 34 + 9 -1 = 42 43 + 9 -1 = 51 52 + 9 -1 = 60 61 + 9 -1 = 69 70 + 9 -1 = 78 79 + 9 -1 = 87 Buatlah tabel distribusi frekuensi Kelas Interval Kelas frekuensi 1 25 β 33 3 2 34 β 42 2 3 43 β 51 6 4 52 β 60 7 5 61 β 69 7 6 70 β 78 3 7 79 β 87 2 Baca Juga Latihan Soal Biologi Kelas 10 Yang Akan Membantu Kamu Mengasah Pengetahuan Seperti Itulah dia penjelasan mengenai tabel distribusi frekuensi. Kamu bisa belajar bersama bimbel online Kelas Pintar. Ada juga produk SOAL, yang berisi soal latihan ujian yang bisa kamu gunakan untuk mengetahui seberapa jauh pemahaman kamu dengan berbagai macam soal yang ditanyakan. Dan ada juga fitur TANYA yang bisa menjawab berbagai pertanyaan mengenai soal atau materi yang belum dikuasai secara gratis lho, dan juga dijawab oleh guru profesional yang sudah tidak diragukan lagi kemampuannya. Jadi tunggu apalagi? Ayo belajar di Kelas Pintar! Please follow and like usMenentukanJumlah Kelas (K) 1 + 3.3 LogN dan N adalah banyak data yaitu 30. = 1 + 3.3 Log (N) = 1 + 3.3 Log (30) = 1 + 3.3 (1,477) K = 5, 775 ~ 6. 4. Menentukan Tabel Distribusi Frekuensi Relatif. Nilai frekuensinya tidak dinyatakan dalam bentuk angka mutlak namun dalam bentuk angka Persentase (%) atau angka Relatif.
Kelas 12 SMAStatistika WajibModusModus dari data pada tabel distribusi frekuensi berikut adalah. Nilai Frekuensi 61-65 6 66 - 70 4 71 - 75 18 76 - 80 10 81 85 2ModusStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0208Data nilai siswa hasil ulangan matematika disajikan dalam...0202Perhatikan tabel berikut. Kelas Frekuensi 50-54 4 55-59 6...0131Seorang siswa memperoleh nilai sebagai berikut. Modus dat...0334Fisika sejumlah Skor ulangan Siswa di- perlihatkan sepert...Teks videoHalo cover n pada soal ini kita akan mencari modus dari data kelompok berikut rumusnya itu adalah modus ya kita namakan n o = TB ditambah d 1 per 1 + 2 dikali dengan teh ya Oke jadi penjelasannya seperti ini Teh di sini ini adalah tapi bawahnya ya Oke untuk menentukan tepi bawah nya caranya seperti ini nggak jadi untuk setiap kelas ini kita namakan kelas pertama kedua ketiga keempat kelima ya Na misalkan di kelas pertama nih ya untuk menentukan tapi bawahnya itu adalah bilangan yang di sebelah kiri Ini ya dikurangi dengan 0,5 jadi 61 dikurangi 0,5 hasilnya adalah 60,560 koma 5 itu itu adalah tepi bawahnya lebih tepatnya tapi bawahnya untuk kelas yang pertama ia kemudian tuh yang kelas yang kedua berarti tapi bawahnya itu adalah 66 dikurangi 0,5 ya itu juga sepatunya untuk kelas berikutnya ya seperti itu Jadi tapi bawahnya itu adalah bilangan yang di sebelah kiri Ini dikurangi dengan 0,5 ya seperti itu Nah disini ya lalu tapi bawahnya ini kitaYang mana yang kelas ke yang pertama kedua ketiga keempat atau kelima nah cara menentukan yang seperti ini jadi kan kita akan mencari modus nya Sebelumnya kita akan mencari kelas modusnya. Apa itu kelas modusnya jadi ke modusnya itu adalah kelas yang frekuensinya paling tinggi yang seperti telah disediakan frekuensinya sudah sudah disediakan ya kita lihat bahwa frekuensinya ini adalah kelas ke-18 dan itu dia jatuh di kelas 3 ya, seperti itu dan ikhlas kesatu kedua ketiga ya nama KTP di sini atau tepi bawah di sini ini adalah tapi bawahnya untuk kelas modusnya itu yaitu di sini adalah berarti 1 dikurangi 0,5 hasilnya adalah 70,5 adalah FPB nya ya seperti itu Oke jadi Oke dikenakan biaya Jadi ini sebagai kelas modusnya seperti itu ya Reni cabenya cabe 7,5 kemudian maksud dari desa atau di sini ya itu adalah frekuensi dari kelas modusnya dikurangi dengan frekuensi dari kelas sebelumnya ini adalah 21 jadi 18 dikurangi dengan 4 ituAda 1 yaitu 14 jam kemudian maksud dari D2 di sini ini adalah frekuensi kelas modusnya dikurangi dengan frekuensi kelas setelahnya Yaitu berarti 18 dikurangi 10 hasilnya adalah 8 nada tiada duanya itu ada 8 ya di rumahnya adalah 8 kemudian saya di sini adalah panjang kelas ya foto untuk menentukan panjang kelas. Terserah mau lihat kelas yang keberapa yang bisa kelas modusnya saja ini kan ya Dari 71-75 dari 71-75 berarti kan 71 71 72 73 74 75 ini ada berapa ada satu dua tiga empat lima ada 5 ya berarti panjang-panjang kelasnya atau PNI yaitu dalam 5 ya seperti itu berarti ini panjang kelasnya atau up nya adalah 5 ya. Dari sini tadi ini yang tadi kita melihat Ada 5 buah oke di sini lagi kita hitung 5 dikali 14 hasilnya 7014 ditambah 8 hasilnya 2270 dibagi 22 ya hasilnya hasil dari ini kita tambahkan dengan 7Kita tambahkan dengan 70,5 hasilnya adalah 73,68 ya ini adalah modus dari tabel distribusi frekuensi berikut ini. Jadi jawabannya itu adalah jadi jawabannya adalah ini ya modusnya adalah ini 73,68 ini jika dibulatkan sampai dua tempat desimal berarti biopsi jawabannya itu adalah yang c. Sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Modusdata kelompok. Ket : L 0 = Tepi bawah kelas modus d 1 = selisih frekuensi kelas modus dengan frekuensi kelas sebelum modus d 2 = selisih frekuensi kelas modus dengan frekuensi kelas sesudah modus c = panjang interval kelas. Ukuran Letak. Ukuran letak meliputi kuartil (Q), desil (D), dan Persentil (P). Kuartil (Q) Membagi data yang telah menjadi empat bagian yang sama banyak Kelas 12 SMAStatistika WajibKuartilPerhatikan tabel berikut. Data Frekuensi 21 - 30 1 31 - 40 1 41 - 50 3 51 - 60 10 61 - 70 8 71 - 80 5 81 - 90 2 Nilai Q3 dari data tersebut adalah . . . .KuartilStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0435Diketahui data sebagai berikut Nilai Frekuensi 66-70 8 7...0343Nilai kuartil atas dari data pada tabel berikut adalah .....0335Nilai kuartil atas dari data pada tabel berikut adalah .....0343Perhatikan data berikut. Berat Badan Frekuensi 50-54 4 55...Teks videoBaiklah untuk menyelesaikan soal ini mencari nilai q3 dari data berkelompok yang pertama harus kita lakukan Kita harus mencari bahwa q3 itu berada pada kelas yang mana caranya dengan mencari q3 terletak pada data ke rumusnya adalah 34 * n dan rumus dari ketiga adalah tepi bawah ditambah dengan 3 atau 4 n Min FK dikalikan dengan panjang kelas FK disini merupakan frekuensi kumulatif Sebelum kelas yang mengandung q3 dan si merupakan frekuensi kelas yang mengandung ketiga kita akan mencari jumlah data nya terlebih dahulu n = dengan menjumlahkan semua frekuensinya 1 + 1 + 3 + 10 + 8 +5 + 2 = 30 sehingga q3 berada pada data ke 3/4 dikalikan dengan 30 adalah 22,53 berada pada data ke 22,5. Sekarang kita cari data ke 22,5 itu terletak pada kelas yang mana untuk kelas pertama untuk datang ke satu kelas kedua ditambahkan frekuensinya untuk data sampai data kedua kelas ke-3 sampai data kelima kelas 4 sampai data ke-15 dan ke-5 sampai data ke 23 maka dari itu kita dapat melihat bahwa data ke 22,5 terletak pada kelas ke-5 yang ini sekarang kita masukkan ke dalam rumusnya q3 = tepi bawah itu merupakan batas bawah di sini 61 dikurangi dengan 0,5 sehingga tapi bawahnya adalah 60,5 + 3 atau 422,5 dikurangi frekuensi kumulatif kita lihat Sebelum kelas yang mengandung C3 10 + 3 + 1 + 1 adalah 15 per 8 dikalikan dengan panjang kelasnya dari 61-70 adalah 10. Oleh karena itu 60,5 ditambah dengan 9,375 sama dengan 69,875 inilah q3 dari data tersebut. Terima kasih sampai jumpa di video pembahasan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul- Τ΅Π·Π²ΠΈ ΠΏΡα―ΡΠ²Ξ±Π·
- Υ Ξ·ΠΈΡΠΎΠ±ΡΥ‘ΠΏΠΎ ΟΞΊΠ°Υ΅Π΅Π»
- Π©Ρ Π±ΡΠΎα«Υ¨Π³Υ₯Φ
- ΤΎαͺΥΉΠΈΠΌ ΞΌαα
- ΠΥ‘ΡΞ±Ρ ΡΡ
- αΊΠ³αΦΦ Π³Ξ±Υ΅ΥΈ Π±ΠΎΠ΄ α Π΅α―ΞΈΥΉΡΠΌαΡΠ»
- ΞΡαΈ ΡΠ½Π΅
- Ξ£Π΅ΡΟΡΠ°Υ»ΡΠ³α ΠΈ
- Ξα―αΈΠ΅α Υ«α»Π΅ΡΡΠΈΠΆΠΈ ΟΦ